

Revision 01.11.20

Controls

- Control 1
- Control 2
- Control 3
- Volume
- Mix
- Mode (Toggle Switch)

All trademarks and registered trademarks are the property of their respective owners. The company, product, and service names used in this web site are for identification purposes only. Use of these names, logos, and brands does not imply endorsement.

RESISTORS (1/4W) R1 1M100K R2 R3 1KR4 2K2R5 10K R6 100K R7 10K R8 100R R9 100K R10 22KR11 10K

R12

R13

R14

R15

R16

R17

100R

4K7

10K

10K

10K

1K

CAPACITORS	
C1	100n
C2	100n
C3	1u
C4	1n
C5	10u
C6	1u
C7	15p
C8	1u
C9	20p
C10	1u
C11	1u
C12	2n2
C13	20p
C14	120p
C15	1u
C16	100u
C17	47u
C18	47u

Parts List

INTEGRATED	CIRCUITS
IC1	TL074
IC2	24LC32A
IC3	FV1
IC4	CH341A
IC5	L78L33
DIODES	
D1	1N5817

POTENTIOMETERS

CTRL1	B100K
CTRL2	B100K
CTRL3	B100K
MIX	B100K
VOLUME	B100K

CRYSTAL OSCILLATORS

X1	32.768kHz DT-38
Y1	12MHz

SWITCHES

SW1 SPDT On/Off/On

JACKS

J1 USB Type-B Female

Common offboard components (enclosure, footswitch, jacks, etc) are not listed

FV-1 Development Board Wiring Diagram

FV-1 Development Board Drill Template 125B Enclosure

IMPORTANT NOTE:

Depth of USB port varies depending on installation of PCB Measure twice before drilling!

Microsoft Windows usage instructions

This method has been tested on Microsoft Windows 10. Other versions may be compatible but have not been verified. All links to software downloads are provided for convenience only. PedalPCB provides no guarantee about the fit or function of third party software.

Download

FV-1 Development Board Software Bundle for Microsoft Windows http://wiki.pedalpcb.com/files/FV1Dev-Windows.zip

Configure AsProgrammer to Read / Write 24LC32A EEPROMs

Choose PedalPCB / _FV1 / _24LC32A from the IC menu in AsProgrammer

Read EEPROM

- 1) Choose the 24LC23A device from the IC menu (see above)
- 2) Click the green "Read IC" button to read data from EEPROM
- 3) Click the "Save file" icon to save the data to a file

Write EEPROM

- 1) Choose the 24LC23A device from the IC menu (see above)
- 2) Click the "Open file" icon, choose the file you want to write (must be in .BIN formaT)
- 3) Click the "Program IC" icon to write data to the EEPROM. All data currently on EEPROM will be lost!

File Formats

AsProgrammer reads and writes EEPROM data as .BIN binary files. SpinAsm and SpinCAD export files in Intel HEX format, so the file will need to be converted before writing to EEPROM. Conversion is possible using the included SRecord executable.

Convert Intel HEX to BIN

srec_cat.exe <filename.hex> -Intel -o <filename.bin> -binary

Convert BIN to Intel HEX

srec_cat.exe <filename.bin> -binary -o <filename.hex> -Intel

Apple macOS usage instructions

This method has been tested on macOS Sierra and Mojave. Other versions may work, but have not been verified. All links to software downloads are provided for convenience only. PedalPCB provides no guarantee about the fit or function of third party software.

Installation

Open a Terminal window and enter the following commands

Step 1: Install Homebrew

/usr/bin/ruby -e "\$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/ master/install)"

Step 2: Install libusb

brew install libusb

Step 3: Install SRecord

brew install srecord

Download FV1Dev Bundle for macOS

http://wiki.pedalpcb.com/files/FV1Dev-Mac.zip

Read EEPROM data to .bin file

ch341eeprom -s 24c32 -r <filename.bin>

Write .bin file to EEPROM

ch341eeprom -s 24c32 -w <filename.bin>

Convert BIN to HEX

srec_cat <filename.bin> -binary -o <filename.hex> -intel

Convert HEX to BIN

srec_cat <filename.hex> -intel -o <filename.bin> -binary

Linux usage instructions

This method has been tested on Ubuntu 18.04 LTS. Other versions may work, but have not been verified. All links to software downloads are provided for convenience only. PedalPCB provides no guarantee about the fit or function of third party software.

Installation

Open a Terminal window and enter the following commands

Step 1: Update package information

sudo apt-get update

Step 2: Install libusb sudo apt-get install libusb-1.0

Step 3: Install SRecord

sudo apt-get install srecord

Download FV1Dev Bundle for Linux

http://wiki.pedalpcb.com/files/FV1Dev-Ubuntu.zip

Read EEPROM data to .bin file

./ch341eeprom -s 24c32 -r <filename.bin>

Write .bin file to EEPROM

./ch341eeprom -s 24c32 -w <filename.bin>

Convert BIN to HEX

srec_cat <filename.bin> -binary -o <filename.hex> -intel

Convert HEX to BIN

srec_cat <filename.hex> -intel -o <filename.bin> -binary